
Appendix To:
Coverage Is Not Strongly Correlated

with Test Suite Effectiveness

Laura Inozemtseva and Reid Holmes
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

lminozem,rtholmes@uwaterloo.ca

ABSTRACT
This document expands on the brief discussion of related
work in the paper Coverage Is Not Strongly Correlated With
Test Suite Effectiveness. Specifically, it discusses a number
of studies that considered the relationship between test suite
size, test suite coverage and test suite fault detection ability.

1. RELATED WORK
Most of the previous studies that investigated the link

between test suite coverage and test suite effectiveness used
the following general procedure:

1. Created faulty versions of one or more programs by
manually seeding faults, reintroducing previously fixed
faults, or using a mutation tool.

2. Created a large number of test suites by selecting from
a pool of available test cases, either randomly or accord-
ing to some algorithm, until the suite reached either a
pre-specified size or a pre-specified coverage level.

3. Measured the coverage of each suite in one or more
ways, if suite size was fixed; measured the suite’s size
if its coverage was fixed.

4. Determined the effectiveness of each suite as the frac-
tion of faulty versions of the program that were detected
by the suite.

Table 1 summarizes thirteen studies that considered the
relationship between the coverage and the effectiveness of a
test suite, eleven of which used the general procedure just
described. Ten of them found that at least one type of
coverage has some correlation with effectiveness; however,
not all studies found a strong correlation, not all studies
controlled for suite size, and most studies found that the
relationship was highly non-linear. In addition, some found
that the relationship only appeared at very high levels of
coverage.

The earliest work on this topic was done by Frankl and
Weiss [8,9], who wanted to determine the relative effectiveness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31–June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

of all-use adequate suites and decision adequate suites. As a
control, the authors generated random suites that contained
approximately the same number of test cases as the adequate
suites. As subjects, the authors used nine Pascal programs,
ranging from 22 to 78 SLOC in length, that had naturally oc-
curring faults. Suite coverage was measured with the ASSET
tool [11]. The authors found that all-use adequate suites
were often more effective than decision adequate suites, and
decision adequate suites were often more effective than suites
without a coverage criterion. However, these results did not
control for the effect of test suite size. The authors there-
fore grouped the suites by size to compare the effectiveness
of suites of similar size that were constructed in different
ways. When size was fixed, they found that all-use adequate
suites were still more effective than decision adequate suites;
however, they found that decision adequate suites were no
more effective than random suites. This suggests that all-use
coverage is related to effectiveness independently of size but
decision coverage is not. Finally, the authors tried measuring
the effectiveness of test suites with less than 100% coverage.
They found that coverage was somewhat correlated with
effectiveness for both coverage types but that the correla-
tion was not particularly strong and the relationship was
highly non-linear. This indicates that, even when coverage
is independently related to effectiveness, the quality of a test
suite should not be assumed to be proportional to its level
of coverage.

Frankl et al. [10] later extended this study to mutation
adequate suites, comparing them with all-use adequate suites
and random suites. The subjects were the same nine Pascal
programs used in the earlier study. However, the mutation
tool the authors used, Mothra [6], only works with Fortran
programs, so the nine subjects were also ported to Fortran.
Mutants were generated from the Fortran programs with
Mothra; all-use coverage was measured on the Pascal pro-
grams with ASSET. The authors found no significant differ-
ence between mutation-adequate suites and all-use adequate
suites: both were more effective for some of the programs,
and for two of the programs there was no significant differ-
ence between the two criteria. However, the authors reported
that mutation-adequate suites were much more difficult to
make. Following this, the authors tried to isolate the effect
of size by generating suites with a fixed number of test cases.
They found that, while effectiveness improved with coverage,
it generally did not improve until very high levels of coverage
were reached (greater than 80%), and even then effectiveness
did not increase by much.

mailto:lminozem@uwaterloo.ca,rtholmes@uwaterloo.ca

Table 1: Summary of the findings from previous studies.

Citation Languages Largest Program Coverage Types Findings

[8, 9] Pascal 78 SLOC All-use, decision All-use related to effectiveness independently of
size; decision is not; relationship is highly non-
linear

[10] Fortran
Pascal

78 SLOC All-use, mutation Effectiveness improves with coverage but not until
coverage reaches 80%; even then increase is small

[7] C 5,905 SLOC All-use, decision Effectiveness is correlated with both all-use and
decision coverage; increase is small until high levels
of coverage are reached

[21] C <2,310 SLOC Block Effectiveness is more highly correlated with block
coverage than with size

[15] C 512 SLOC All-use, decision Effectiveness is correlated with both all-use and de-
cision coverage; effectiveness increases more rapidly
at high levels of coverage

[4] C 4,512 SLOC Block, c-use,
decision, p-use

Effectiveness is moderately correlated with all four
coverage types; magnitude of the correlation de-
pends on the nature of the tests

[1] C 5,000 SLOC Block, c-use,
decision, p-use

Effectiveness is correlated with all four coverage
types; effectiveness rises steadily with coverage

[17] C
C++

5,680 SLOC Block, c-use,
decision, p-use

Effectiveness is correlated with all four coverage
types but the correlations are not always strong

[12,20] C
Java

72,490 SLOC AIMP, DBB,
decision, IMP,
PCC, statement

Effectiveness correlated with coverage; effective-
ness correlated with size for large projects

[2] C 4,000 SLOC Block, c-use,
decision, p-use

None of the four coverage types are related to
effectiveness independently of size

[13] Java O(100, 000)
SLOC

Block, decision,
path, statement

Effectiveness correlated with coverage across many
projects; influence of project size unclear

Frankl and Iakounenko [7] later extended Frankl and
Weiss’s work [8, 9] to a C program with 11,640 LOC. Faulty
versions of the program were created by reintroducing faults
that had been previously found and fixed. Test suites of
various sizes were created by randomly selecting test cases
from a large test case pool. The ATAC tool [16], which
accounts for the use of pointers in C, was used to measure
the suites’ all-use and decision coverage. The authors found
that, when the number of test cases in the suite was fixed,
effectiveness was correlated with both decision coverage and
all-use coverage. This contradicts their earlier result that de-
cision coverage is not independently related to effectiveness;
however, they again found that high levels of coverage were
needed to see a large increase in effectiveness.

Wong et al. [21] also studied this topic, evaluating ten C
programs with a total of 2,310 SLOC. Test suites were gen-
erated by random selection from a pool; their block coverage
was measured with ATAC. Faulty versions of the subjects
were made by asking graduate students to manually inject
faults. The authors found that effectiveness was more highly
correlated with block coverage than with the number of test
cases in the suite; in other words, knowing the block coverage
of a suite tells you more about its effectiveness than knowing
its size does.

Hutchins et al. [15] studied this question using the Siemens
suite of seven C programs ranging from 141 to 512 SLOC.
Faulty versions were generated by asking ten experienced
programmers to manually seed faults. The authors used two

different coverage measurements: decision coverage and a
slight variant of all-use coverage that accounts for the use
of pointers in C. These were both measured with the Tactic
tool [18]. The authors found that effectiveness does rise
with increased coverage, but that high coverage does not
guarantee a high level of effectiveness. They suggest instead
that low coverage should be taken as a sign that the test
suite is inadequate, even if it seems comprehensive. They
also found that effectiveness increased more rapidly when
coverage was already at a very high level; in other words,
increasing the coverage of the test suite from 40% to 50% had
less impact than increasing it from 90% to 100%. While this
paper did not focus on the influence of suite size, the authors
did note that suites with high coverage tend to be large
and that this may be a confounding factor. They therefore
took test suites with coverage in the 90 to 100% range,
generated random suites that contained the same number of
test cases, and compared the fault detection ability of these
two types of suites. The high coverage suites were quite a bit
more effective, suggesting that decision coverage and all-use
coverage are both related to effectiveness independently of
size.

Cai and Lyu [4] studied this question using 21 C programs
that ranged from from 1,455 to 4,512 SLOC. These programs
were written by fourth year university students as part of a
software engineering course. Faulty versions of the programs
were made by reintroducing faults that had been found and
fixed during development. Before a program was accepted

at the end of the course, it had to pass 1,200 test cases,
800 of which were designed using the program’s operational
specification and 400 of which were randomly generated.
These test cases were reused on the mutated versions of the
programs during the study. The authors used ATAC to mea-
sure block, decision, p-use and c-use coverage. They found
that effectiveness was moderately correlated with all four
types of coverage; however, they found that the magnitude
of the correlation depended on the nature of the test case.
Specifically, the authors found that the correlation between
coverage and effectiveness was somewhat higher for the 800
operational test cases than it was for the 400 random test
cases, though the difference was not statistically significant.
In addition, the correlation was quite a bit stronger for test
cases designed to test erroneous situations than for those
designed to test normal operation.

A later comprehensive study by Andrews et al. [1] ad-
dressed a number of questions related to mutation testing.
They studied a C program with approximately 5,000 SLOC
and used ATAC to measure four different kinds of coverage:
c-use, p-use, decision and block. Test suites were generated
in two different ways. One set of suites was generated by
randomly selecting test cases from a pool. The other set
was also created by random selection from a pool, but with
the added condition that every test case increase the overall
coverage. In other words, if a randomly selected test case
did not increase the suite’s coverage, it was not added; a
different test case was selected instead. Plotting effectiveness
against the number of test cases in the suite for both types
of suites and all four coverage measures showed that suites
built to maximize coverage were more effective. The authors
confirmed this result by running a regression analysis with
size and coverage as covariates, revealing that both were
statistically significant and showed a positive regression coef-
ficient. This suggests that coverage is related to effectiveness
independently of size. In contrast to the results described
earlier, the authors found that effectiveness rose steadily
with coverage, meaning that it may be valid to assume that
effectiveness is proportional to coverage.

A recent study by Namin and Andrews [17] worked with
the Siemens suite of seven C programs, which range from 137
to 513 SLOC. The suite includes a comprehensive test case
pool for each program, so the authors generated test suites
by randomly selecting test cases from this pool. The authors
used Proteum [5] to generate mutants and ATAC to measure
four different types of coverage: block, decision, c-use and
p-use. They found that, for all coverage types, both coverage
and the number of test cases in the suite independently
influenced effectiveness, but the correlations were not always
very strong. Using linear regression, they found that the
best predictor of effectiveness was a combined measurement:
log(size) + coverage. The authors then attempted to replicate
their findings on two additional programs, one in C with
5,680 SLOC and one in C++ with 966 SLOC. They found
that their results held for these programs, suggesting that
their conclusions may generalize to slightly larger programs.

A study by Briand and Pfhal [3] was the one of two ex-
periments that did not use the procedure outlined earlier.
Instead, they proposed a general statistical method to deter-
mine the relationship between coverage, size and effectiveness.
Specifically, they suggested using Monte Carlo simulation
to estimate the effectiveness of a test suite, but without us-
ing any information about the coverage of the suite. This

estimate is then compared to the actual effectiveness. If the
difference between the two is statistically significant, then
coverage has influenced effectiveness. The authors tested
this method on data from an earlier study [14] that used
twelve versions of a C program ranging from 900 to 4,000
SLOC. This study measured decision, block, c-use and p-use
coverage with ATAC. Using their statistical method, Briand
and Pfhal found that none of the four coverage measures
influenced the effectiveness of the test suites independently
of the number of test cases in the suite.

At the time of writing, no other study considered any
subject program larger than 5,905 SLOC1. However, a re-
cent study by Gligoric et al. [12] and a subsequent master’s
thesis [20] partially addressed this issue by studying two
large Java programs (JFreeChart and Joda Time) and two
large C programs (SQLITE and YAFFS2) in addition to a
number of small programs. The authors created test suites
by sampling from the pool of test cases for each program. For
the large programs, these test cases were manually written
by developers; for the small programs, these test cases were
automatically generated using various tools. Suites were
created in two ways. First, the authors specified a coverage
level and selected tests until it was met; next, the authors
specified a suite size and selected tests until it was met.
They measured a number of coverage types: statement cover-
age, decision coverage, and more exotic measurements based
on equivalent classes of covered statements (dynamic basic
block coverage), program paths (intra-method and acyclic
intra-method path coverage), and predicate states (predi-
cate complete coverage). They evaluated the effectiveness
of each suite using mutation testing. They found that the
Kendall τ correlation between coverage and mutation score
ranged from 0.452 to 0.757 for the various coverage types
and suite types when the size of the suite was not considered.
When they tried to predict the mutation score using suite
size alone, they found high correlations (between 0.585 and
0.958) for the four large programs with manually written
test suites but fairly low correlations for the small programs
with artificially generated test suites. This suggests that the
correlation between coverage and effectiveness in real systems
is largely due to the correlation between coverage and size; it
also suggests that results from automatically generated and
manually generated suites do not generalize to each other.

A study by Gopinath et al. [13] accepted to the same con-
ference as the current paper was the second study that did
not use the aforementioned general procedure. The authors
instead measured coverage and test suite effectiveness for a
large number of open-source Java programs and computed a
correlation across all programs. Specifically, they measured
statement, block, decision and path coverage and used muta-
tion testing to measure effectiveness. The authors measured
these values for approximately 200 developer-generated test
suites – the number varies by measurement – then generated
a suite for each project with the Randoop tool [19] and re-
peated the measurements. The authors found that coverage
is correlated with effectiveness across projects for all coverage
types and for both developer-generated and automatically-
generated suites, though the correlation was stronger for
developer-written suites. The authors found that including
test suite size in their regression model did not improve the

1In this paper, source lines of code (SLOC) refers to exe-
cutable lines of code, while lines of code (LOC) includes
whitespace and comments.

results; however, since coverage was already included in the
model, it is not clear that this implies that size does not
influence effectiveness. This finding may be an artifact of
multicollinearity, since the amount of variation ‘explained’
by a variable will be less if it is correlated with a variable
already included in the model than it would be otherwise.

As the above discussion shows, it is still not clear how
test suite size, coverage and effectiveness are related. Most
studies conclude that effectiveness is related to coverage, but
there is little agreement about the strength and nature of
the relationship.

2. REFERENCES
[1] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.

Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Transactions
on Soft. Eng., 32(8), 2006.

[2] L. Briand and D. Pfahl. Using simulation for assessing
the real impact of test coverage on defect coverage. In
Proc. of the Int’l Symposium on Software Reliability
Engineering, 1999.

[3] L. Briand and D. Pfahl. Using simulation for assessing
the real impact of test coverage on defect coverage.
IEEE Transactions on Reliability, 49(1), 2000.

[4] X. Cai and M. R. Lyu. The effect of code coverage on
fault detection under different testing profiles. In Proc.
of the Int’l Workshop on Advances in Model-Based
Testing, 2005.

[5] M. E. Delamaro and J. C. Maldonado. Proteum – a
tool for the assessment of test adequacy for C
programs. In Proc. of the Conf. on Performability in
Computing Systems, 1996.

[6] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J.
Offutt, and K. N. King. An extended overview of the
Mothra software testing environment. In Proc. of the
Workshop on Software Testing, Verification, and
Analysis, 1988.

[7] P. G. Frankl and O. Iakounenko. Further empirical
studies of test effectiveness. In Proc. of the Int’l
Symposium on Foundations of Soft. Eng., 1998.

[8] P. G. Frankl and S. N. Weiss. An experimental
comparison of the effectiveness of the all-uses and
all-edges adequacy criteria. In Proc. of the Symposium
on Testing, Analysis, and Verification, 1991.

[9] P. G. Frankl and S. N. Weiss. An experimental

comparison of the effectiveness of branch testing and
data flow testing. IEEE Transactions on Soft. Eng.,
19(8), 1993.

[10] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses vs
mutation testing: an experimental comparison of
effectiveness. Journal of Systems and Software, 38(3),
1997.

[11] P. G. Frankl, S. N. Weiss, and E. J. Weyuker. ASSET:
A System to Select and Evaluate Tests. Courant
Institute of Mathematical Sciences, New York
University, 1985.

[12] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A.
Alipour, and D. Marinov. Comparing non-adequate test
suites using coverage criteria. In Proc. of the Int’l
Symp. on Soft. Testing and Analysis, 2013.

[13] R. Gopinath, C. Jenson, and A. Groce. Code coverage
for suite evaluation by developers. In Proc. of the Int’l

Conf. on Soft. Eng., 2014.

[14] J. R. Horgan, S. London, and M. R. Lyu. Achieving
software quality with testing coverage measures.
Computer, 27(9), 1994.

[15] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of the
Int’l Conf. on Soft. Eng., 1994.

[16] M. R. Lyu, J. R. Horgan, and S. London. A coverage
analysis tool for the effectiveness of software testing.
IEEE Transactions on Reliability, 43(4), 1994.

[17] A. S. Namin and J. H. Andrews. The influence of size
and coverage on test suite effectiveness. In Proc. of the
Int’l Symposium on Software Testing and Analysis,
2009.

[18] T. J. Ostrand and E. J. Weyuker. Data flow-based test
adequacy analysis for languages with pointers. In Proc.
of the Symposium on Testing, Analysis, and
Verification, 1991.

[19] Randoop. https://code.google.com/p/randoop/.

[20] R. Sharma. Guidelines for coverage-based comparisons
of non-adequate test suites. Master’s thesis, University
of Illinois at Urbana-Champaign, 2013.

[21] W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur. Effect of test set size and block coverage on
the fault detection effectiveness. In Proc. of the Int’l
Symposium on Software Reliability Engineering, 1994.

https://code.google.com/p/randoop/

	Related Work
	References

